Algorithm for Quantum Simulation
نویسنده
چکیده
Quantum computers are touted as revolutionary systems for tractably factorizing integers and solving discrete logarithms, but, in 1982, Feynman made the first proposal of a quantum computer application. He suggested that a quantum computer could efficiently simulate any local quantum system; moreover he claimed that such systems cannot in general be efficiently simulated by a (classical) Turing computer [1]. Although Feynman’s intuition is legendary, the implications of his conjecture are profound, as proving a quantum computer is strictly superior to a classical computer would also prove that the complexity classes P and PSPACE are not equal. In 1985, Deutsch generalized the Turing machine to a quantum version [2]. This introduction of a quantum computer opened the doors to studying the computation power of quantum systems in much the same way that decades of computer science research had explored the prowess and limits of classical mechanical computational devices. The theoretical side lay dormant, however, until Lloyd’s analysis of Feynman’s conjecture in 1996 [3]. Lloyd’s approach to Feynman’s conjecture was to discretize the continuous-time t evolution in terms of steps of size t/r for r the number of intervals into which the total time is divided:
منابع مشابه
Designing a quantum genetic controller for tracking the path of quantum systems
Based on learning control methods and computational intelligence, control of quantum systems is an attractive field of study in control engineering. What is important is to establish control approach ensuring that the control process converges to achieve a given control objective and at the same time it is simple and clear. In this paper, a learning control method based on genetic quantum contr...
متن کاملBQIABC: A new Quantum-Inspired Artificial Bee Colony Algorithm for Binary Optimization Problems
Artificial bee colony (ABC) algorithm is a swarm intelligence optimization algorithm inspired by the intelligent behavior of honey bees when searching for food sources. The various versions of the ABC algorithm have been widely used to solve continuous and discrete optimization problems in different fields. In this paper a new binary version of the ABC algorithm inspired by quantum computing, c...
متن کاملA Quantum Evolutionary Algorithm for the Vehicle Routing Problem with Single-sided Time Window Setting
Customer service level is of prime importance in today competitive world and has various dimensions with delivery quality being one of the most important ones. Delivery quality has several parameters such as deliver time window options, time window size, etc. In this paper we focus on one of these parameters, namely time window setting. It has a direct impact upon customer satisfaction and busi...
متن کاملInvestigation and Simulation of the Effects of Dispersion and Transmittance angles on the Solar Cells Quantum Efficiency
In this paper the effects of transmittance, dispersion angle and diffusion length on the quantum efficiency of solar cells (QESC) have been simulated and investigated. Optical path technic is used for simulation. The results show that base thickness, diffusion length, dispersion angle, number of optical confinement path and transmission angles have an extremely effects on the QESC. Simulation r...
متن کاملQUANTUM VERSION OF TEACHING-LEARNING-BASED OPTIMIZATION ALGORITHM FOR OPTIMAL DESIGN OF CYCLIC SYMMETRIC STRUCTURES SUBJECT TO FREQUENCY CONSTRAINTS
As a novel strategy, Quantum-behaved particles use uncertainty law and a distinct formulation obtained from solving the time-independent Schrodinger differential equation in the delta-potential-well function to update the solution candidates’ positions. In this case, the local attractors as potential solutions between the best solution and the others are introduced to explore the solution space...
متن کاملTheoretical computation of the quantum transport of zigzag mono-layer Graphenes with various z-direction widths
The quantum transport computations have been carried on four different width of zigzag graphene using a nonequilibrium Green’s function method combined with density functional theory. The computed properties are included transmittance spectrum, electrical current and quantum conductance at the 0.3V as bias voltage. The considered systems were composed from one-layer graphene sheets differing w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009